
Improving Performance and Quality of
Database-Backed Software

Junwen Yang
University of Chicago, USA
junwen@uchicago.edu

Abstract
Modern web applications have stringent latency require-
ments while processing an ever-increasing amount of user
data. To address these challenges and improve programmer
productivity, Object Relational Mapping (ORM) frameworks
have been developed to allow developers writing database
processing code in an object-oriented manner. Despite such
frameworks, prior work found that developers still strug-
gle in developing ORM-based web applications. This paper
presents a series of study and developed tools for optimizing
web applications developed using the Ruby on Rails ORM.
Using automated static analysis, we detect ORM related in-
efficiency problems and suggests fixes to developers. Our
evaluation on 12 real-world applications shows that more
than 1000 performance issues can be detected and fixed.

CCS Concepts • Software and its engineering → Soft-
ware performance.

Keywords performance anti-patterns, database-backed ap-
plications

ACM Reference Format:
Junwen Yang. 2019. Improving Performance andQuality of Database-
Backed Software. In Proceedings of the 2019 ACM SIGPLAN Interna-
tional Conference on Systems, Programming, Languages, and Appli-
cations: Software for Humanity (SPLASH Companion ’19), October
20–25, 2019, Athens, Greece. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3359061.3361076

1 Approach
Unlike prior approaches that tackle performance problems
in web servers and database servers separately, my research
treats them in tandem:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH Companion ’19, October 20–25, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6992-3/19/10. . . $15.00
https://doi.org/10.1145/3359061.3361076

1. I led a comprehensive study of hundreds of performance
and scalability problems in real-world popular database-
backed web applications, and created the first taxonomy
of these problems by holistically considering application
design, database design, and web-interface design.
2. I led the design and implementation of a set of tools

that automatically detect and fix performance and scalabil-
ity problems in database-backed web applications, through
cross-stack and DB-aware analysis of web applications.

3. I participated in designing more efficient database query
execution leveraging semantic information automatically
extracted from web applications.

My past research has led to three first-author papers pub-
lished on the 41th International Conference on Software
Engineering (ICSE) in 2019, which won the ACM SIGSOFT
Distinguished Paper Award [10], 40th ICSE in 2018 [9], which
raised much attention in open-source community and was
featured on Morning Paper blog [3], RubyWeekly [4] and
Hacker News [2], and 26th Foundations of Software Engi-
neering (FSE) in 2018 [8], which automatically identified
more than 1000 performance/scalability problems in latest
versions of popular open-source web applications, and a co-
authored paper on the 26th Conference on Information and
Knowledge Management (CIKM) 2017 [7].

Comprehensive Bug Study. Realizing that performance and
scalability problems in database-backed web applications go
far beyond query efficiency, I then led a project (published
in ICSE’18 [9]) that conducted a cross-stack and compre-
hensive study about performance and scalability issues in
12 most popular open-source applications of 6 popular cat-
egories written in Ruby-on-Rails (Rails), the most popular
ORM framework [9].
(1) Through thorough profiling using our carefully syn-

thesized workload, which follows real-world user-data sta-
tistics, around one hundred new performance and scalability
problems are identified by us in the latest versions of these
popular applications, showing the severity and prevalance of
these problems. Furthermore, these problems can be largely
mitigated by simple patches designed by me — mostly less
than 5 lines of code changes providing huge server-side per-
formance speedups (2X median, and up to 39X)

(2) Studying more than 100 issues reported by real-world
users, together with problems discovered by our profiling
above, I summarized 9 performance anti-patterns belonging
to three major categories:

https://doi.org/10.1145/3359061.3361076
https://doi.org/10.1145/3359061.3361076

SPLASH Companion ’19, October 20–25, 2019, Athens, Greece Junwen Yang

• Inefficient misuse of database-related APIs;
• Performance-unaware design of web pages;
• Unsuitable database designs.

This is the first comprehensive study on real-world per-
formance issues in database-backed web applications. This
study has already raised attentions in the community [2–4],
and provides guidance and benchmarks to future research
along this direction.
Following this empirical study, I then built several tools

to tackle the three major aspects of performance problems
identified above:

(i) PowerStation (published in FSE’18 [8]), a static analysis
and IDE plugin that automatically detects and fixes inef-
ficient misuse of database-APIs in database-backed web
applications;
(ii) Panorama (published in ICSE’19 [10]), a view-centric

and database/server-aware development environment that
helps developers trade-off functionality and performance in
web-page design;
(iii) an empirical study (published in CIKM’17 [7]) that

explores how to customize database design to better serve
a web application.

Powerstation: detecting&fixing database-APImisuses
PowerStation provides a set of database-aware optimiza-
tion to Ruby-on-Rails applications. Specifically, PowerSta-
tion uses its DB-aware static analysis to identify loop in-
variant queries (automatically fixed by loop query motion),
dead store queries (automatically fixed by removing the
queries), unused data retrieval (automatically fixed by re-
vising queries), common query subexpression, ORM API
misuses (automatically fixed by API refactoring), etc. Previ-
ous work can only detect half of the anti-patterns covered by
PowerStation [6, 7, 9], and we are unaware of any previous
tools that can automatically fix any of them.
PowerStation has been integrated into a very popular

Rails IDE, RubyMine [5], so that Rails developers can easily
benefit from PowerStation to improve the efficiency of their
applications. It can be freely downloaded from the IntelliJ
Plugin Repository [1]. Many performance-related issues in
real-world applications have been identified and fixed.

Panorama: synthesizing efficientweb-page designs Panorama
helps developers understand the data-processing as well as
server-communication cost of generating everyweb-page/user-
interface components in order to explore and pick the in-
terface design with the best trade-off between performance
and functionality. In this environment, we use cross-stack
database-aware program analysis and novel IDE design to
provide developers with intuitive information about the cost
and the performance-enhancing opportunities behind every

interface component, as well as suggesting various cross-
stack code refactorings that enable developers to easily ex-
plore a wide spectrum of performance and functionality
trade-offs.

Tackling database design problems. Finally, I participated
in a project (published in CIKM’17 [7]) that applies static
program analysis and profiling to identify database ineffi-
ciencies in real-world web applications. This project shows
inefficiency patterns in database query processing, such as
poor physical database design, the lack of caching that re-
sults in redundant query processing, etc. We also proposed
ways to optimize database processing leveraging program
semantic information automatically identified through static
program analysis.

2 Evaluation Metholodogy
2.1 Application Selection
We evaluate Panorama and PowerStation using a suite of
12 open-source Ruby on Rails applications, including top
2 most popular Ruby applications from 6 major categories
of web applications on GitHub: Discourse (Ds) and Lobster
(Lo) are forums; Gitlab (Gi) and Redmine (Re) are collabora-
tion applications; Spree (Sp) and Ror_ecommerce (Ro) are
E-commerce applications; Fulcrum (Fu) and Tracks (Tr) are
Task-management applications; Diaspora (Da) and Onebody
(On) are social network applications; OpenStreetmap (OS)
and FallingFruit (FF) are map applications. They have all
been actively developed for years, with hundreds to tens of
hundreds of code commits.

2.2 PowerStation
We evaluated PowerStation using the latest versions of 12
open-source Rails applications. As shown in Table ??, Pow-
erStation can automatically identify 1221 inefficiency issues
and generate patches for 730 of them (i.e., all but the common
sub-expression pattern). We randomly sampled and exam-
ined half of the reported issues and the suggested fixes, and
found no false positives. Due to the limited resource and time,
we reported 433 issues with 57 of them already confirmed
by developers (none has been denied). PowerStation static
analysis is fast, taking only 12–625 seconds to analyze the
entire application that ranges from 4k to 145k lines of code
in our experiments on a Chameleon instance with 128GB
RAM and 2 CPUs. Developers can also choose to analyze one
action at a time, which usually takes less than 10 seconds in
our experiments.

2.3 Panorama
To evaluate Panorama, we focuses on four research questions:
RQ1: Can Panorama identify view-aware optimization op-
portunities from latest versions of popular web applications?
RQ2: How much performance benefits can view-aware op-
timization provide? RQ3: Is the performance-functionality

Improving Performance andQuality of Database-Backed Software SPLASH Companion ’19, October 20–25, 2019, Athens, Greece

trade-off space exposed by Panorama worthwhile for devel-
opers to explore? RQ4: Does Panorama estimator estimate
the per-tag data-processing cost accurately?
For RQ1, Panorama has been applied on 12 applications

and can indeed identify many view-aware optimization op-
portunities . Specifically, as shown in Table ?? Panorama
static analysis identifies 149 performance-enhancing oppor-
tunities from the current versions of our benchmark applica-
tions. Every type of optimization opportunities is identified
from at least 8 applications.

For RQ2, to quantitatively measure the performance ben-
efits of these alternative view designs, we randomly sam-
pled 15 optimization opportunities identified, with 6, 2, 4,
and 3 cases from Pagination, Asynchronous (loading), Ap-
proximation, and Content Removal respectively. For each
application, before and after optimization, we run a Chrome-
based crawler that visits links randomly for 2 hours and
measure the average end-to-end-latency and server-cost of
every action. We then compute speedup accordingly.
For RQ3, we conducted a user study by recruiting 100

participants from Amazon Mechanical Turk. Our benchmark
suite includes 12 web pages from 5 web applications. For
each of these 12 baseline pages, Panorama automatically
generates a new page with exactly one HTML tag changed.
We refer to the original page as Base and the one optimized
by Panorama as New.
Each participant is assigned 8 tasks. In each task, they

are asked to click two links one by one, and then answer
questions about (1) which page they think is faster (“Perfor-
mance”); (2) which page they think delivers more or better
organized content (“Functionality”); and (3) which page do
they like more with everything considered (“Overall”). These
two links are the Base and New versions of one benchmark,
with random ordering between them.

For RQ4, we used a webpage as a case study, and calcu-
late and compare the performance ranking through both
dynamic workload (200, 2000, and 20000 records database)
and static analysis to see whether the performance estimator
is accurate.

2.4 Threats to Validity
Threats to the validity of our study could come from multi-
ple sources. Applications beyond these 12 applications may
not share the same problems as these 12 applications. The
profiling workload synthesized by us may not accurately rep-
resent the real-world workload. The machine and network
settings of our profiling may be different from real users’
setting. Our study of each application’s bug-tracking system
does not consider bug reports that are not fixed or not clearly
explained. Despite these aspects, we have made our best ef-
fort in conducting a comprehensive and unbiased study, and
we believe our results are general enough to guide future
research on improving performance of ORM applications.

3 Future Work
My future research will continue to look at such cross-stack
and cross-server problems in big data management and pro-
cessing systems.

First, still along the performance direction, I plan to look
beyond web applications and investigate other types of big-
data systems, including those with non-SQL back-ends and
those with mobile front-ends. New application set needs to
be explored.
Second, going beyond performance concerns, I plan to

also look at correctness issues that are related to data main-
tenance in these database-backed systems. Specifically, I plan
to look at what type of assumptions developers put on persis-
tent data, how these assumptions are expressed and enforced
in the system, and how these assumptions evolve and get
maintained, effectively or poorly, when software evolves.
I plan to similarly conduct empirical study first and then
design tools to help improve data-maintenance correctness
accordingly. To evaluate, we will continue to use the same set
of applications, dig into their issue tracking system, and de-
velop tools to see whether we can find problems previously
unknown.
In summary, I expect my thesis research to make the de-

velopment and maintenance of correct and efficient big-data
software easy!

References
[1] 2018. Download PowerStation. https://bit.ly/2NYFRs3.
[2] 2018. Hacker News. https://news.ycombinator.com/item?id=17414383.
[3] 2018. The morning paper. https://bit.ly/2IxpkI4.
[4] 2018. RubyWeekly. https://rubyweekly.com/issues/406.
[5] 2019. RubyMine. https://www.jetbrains.com/ruby/.
[6] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E Hassan, Mo-

hamed Nasser, and Parminder Flora. 2016. Finding and evaluating the
performance impact of redundant data access for applications that are
developed using object-relational mapping frameworks. Transactions
on Software Engineering (2016).

[7] Cong Yan, Junwen Yang, Alvin Cheung, and Shan Lu. 2017. Under-
standingDatabase Performance Inefficiencies in Real-worldWebAppli-
cations. In 26th Conference on Information and Knowledge Management
(CIKM).

[8] Junwen Yang, Pranav Subramaniam, Shan Lu, Cong Yan, and Alvin
Cheung. 2018. PowerStation: Automatically detecting and fixing inef-
ficiencies of database-backed web applications in IDE. In 26th Founda-
tions of Software Engineering (FSE’18 Demostration Track).

[9] Junwen Yang, Cong Yan, Pranav Subramaniam, Shan Lu, and Alvin
Cheung. 2018. How not to structure your database-backed web ap-
plications: a study of performance bugs in the wild. In IEEE/ACM
40th International Conference on Software Engineering (ICSE). IEEE,
800–810.

[10] Junwen Yang, Cong Yan, Chengcheng Wan, Shan Lu, and Alvin Che-
ung. 2019. View-Centric Performance Optimization for Database-
Backed Web Applications. In IEEE/ACM 41th International Conference
on Software Engineering (ICSE). IEEE.

https://bit.ly/2NYFRs3
https://news.ycombinator.com/item?id=17414383
https://bit.ly/2IxpkI4
https://rubyweekly.com/issues/406
https://www.jetbrains.com/ruby/

	Abstract
	1 Approach
	2 Evaluation Metholodogy
	2.1 Application Selection
	2.2 PowerStation
	2.3 Panorama
	2.4 Threats to Validity

	3 Future Work
	References

